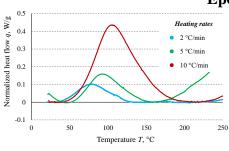

Work stages:	Activity 3
Milestone:	9
Milestone name:	Curing kinetic models for the selected protective coatings


Three types of protective coatings have been chosen for pultruded profiles:

- polyester Crystic Firequards,
- epoxy Resoltech Resolcoat 2010 FGCS,
- vinyl ester VE gelcoat.

To define their curing kinetic parameters, results of DSC scans performed by Mettler Toledo on samples heated from 20°C to 250°C at rates of 2, 5, 10 °C/min have been utilised. Using these experimental results, different curing kinetic models for the selected protective coatings have been built and their accuracy have been estimated.

2.5 Normalized heat flow q, W/g Heating rates 2 2 °C/min 1.5 5 °C/min 10 °C/mir 1 0.5 0 -0.5 0 50 100 150 200 250 Temperature T, °C

6.5 Normalized heat flow q, W/g Heating rates 5.5 2 °C/min 4.5 5 °C/min 3.5 10 °C/min 2.5 1.5 0.5 -0.5 50 100 250 150 200 0 Temperature T, °C

Polyester Crystic Firequards

Model	Parameters						σ_r ,
	п	т	K_1, s^{-1}	E_1 , J/mol	K_2 , s ⁻¹	E_2 , J/mol	%
First order	-	-	-	-	-	-	9.7
<i>n</i> -th order	1.88	-	-	-	-	-	8.1
<i>n</i> -th order with autocatalysis	1.88	-	-	-	0	-	8.1
Prout-Tompkins	0.96	0.39	-	-	-	-	4.2
Kamal-Sourour	1.23	0.0011	$1.56 \cdot 10^{20}$	159800	12000	200000	4.7

Parameters of curing kinetic models

Epoxy Resoltech Resolcoat 2010 FGCS

Model	Parameters						σ_r ,
	п	т	$K_1, { m s}^{-1}$	E_1 , J/mol	K_2 , s ⁻¹	E_2 , J/mol	%
First order	-	-	-	-	-	-	7.6
<i>n</i> -th order	1.87	-	-	-	-	-	3.8
<i>n</i> -th order with autocatalysis	1.87	-	-	-	0	-	3.8
Prout-Tompkins	1.65	0.19	-	-	-	-	1.8
Kamal-Sourour	1.24	0.40	240562	55843	10100	114445	2.0

Vinyl ester VE gelcoat

Model	Parameters						σ_r
	п	т	K_1 , s ⁻¹	E_1 , J/mol	K_2 , s ⁻¹	E_2 , J/mol	%
First order	-	-	-	-	-	-	8.8
<i>n</i> -th order	1.79	-	-	-	-	-	7.5
<i>n</i> -th order with autocatalysis	1.79	-	-	-	0	-	7.5
Prout-Tompkins	0.85	0.35	-	-	-	-	4.6
Kamal-Sourour	1.30	0.0011	$3.75 \cdot 10^{17}$	145155	12000	2000000	5.3

EUROPEAN UNION European Regional

Development Fund

INVESTING IN YOUR FUTURE